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VARIABILITY ORDERINGS RELATED TO COVERAGE

PROBLEMS ON THE CIRCLE

By

Fred Huffer

1.Introduction.

Suppose that n arcs with random lengths having distributions

F 1F .,F are placed uniformly and independently on a circle.
1' 2" n

Without loss of generality we assume the circle has a circumference

equal to one. Questions which arise in this setting have been

considered by a number of authors: Siegel (1978), Siegel and Holst

(1982), Jewell and Romano (1982), Yadin and Zacks (1982), and Huffer

(1982). These authors worked only with the case F1=2F Fn

of identically distributed arc lengths. The emphasis in their papers

is on obtaining exact results. For example, Siegel and Holst (1982)

give an exact expression for the probability that the circle is

* completely covered by the random arcs. However, this expression is

too complicated to allow one to easily see qualitative aspects of the

dependence of the coverage probability on the distribution of the arc

lengths.

This article presents inequalities which tell how certain distribu-

tions and probabilities change as the variability of the distributions

F 1 F 2 1 ... IF n is increased. A variability ordering is shown to hold for

a fairly broad class of random variables. From this general result we F

obtain as immediate corollaries a number of inequalities concerning
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probabilities of interest in coverage problems. In particular we are

able to verify a conjecture made by Siegel (1978) concerning the

probability of complete coverage.

2. Variability Orderings.

In this section we define the variability orderings and list some

useful facts about them. For proofs and further details see Ross (1983)

or Strassen (1965). Ross gives an elementary treatment with many

examples. The treatment by Strassen is rather abstract.

Let X and Y be random variables with distributions F and G

respectively. For simplicity we assume that X and Y take values in

the bounded interval [c,8]. This assumption suffices to handle the

applications which follow.

'V Throughout the paper we shall use the words "increasing" and

"decreasing" instead of the clumsier "nondecreasing" and "nonincreasing".

Definition: If Eh(X) < Eh(Y) for all increasing convex functions h,

then we say that F <+ G or equivalently X <t Y.

Definition: If Eh(X) < Eh(Y) for all decreasing convex functions

h, then we say that F <+ G or equivalently X <+Y.

Definition: If Eh(X) < Eh(Y) for all convex functions h, then

, we say that F <: G or equivalently X <: Y.

These orderings possess the usual properties. For example F <: G

and G <: H imply F < :H. Also F < :G and G < :F imply F=G.

y.3
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Note that X <: Y implies EX = EY and Var X < Var Y. Note also the

relationship X <t Y if and only if -X <+ -Y.

'. We shall need the following properties:

(2.1) If X<+Y and EX = EY, then X <: Y.

(2.2) X <tY if and only if E(X-s)+ < E(Y-s)+ for all s.

(2.3) X<+Y if and only if E(s-X) < E(s-Y) for all s.

Here we have used (y)+ to denote the positive part of y,

y for y > 0

0 for y < 0

Rephrasing (2.2) and (2.3) in terms of the distribution functions we

obtain

(2.4) F<tG if and only if (1-F(x))dx <J (l-G(x))dx for all s,
S

and

* (2.5) F< +G if and only if F(x)dx < G(x)dx for all s.

(2.6) If X<tY, then P{X=a} < P{Y=-}

(2.7) If X<+Y, then P{X=a} < P{Y=a}

3



The properties (2.6) and (2.7) are immediate consequences of (2.2)

and (2.3).

Let T be a random variable (or vector) on the same probability

space as X and Y. For all u and t define F t(u) =P{X<ulT=t}

and Gt (u) f P{Y< unT=t}.

If F <tG t for all t, then F <tG
_(2.8) t t

If Ft <+Gt for all t, then F<+G

3. The Main Result.

Before stating the main result we must develop some notation.

Let Xl,X 2,... ,Xn be independent random variables uniformly distri-

buted on the circle. These random variables will be the clockwise

. endpoints of the random arcs. Let LI,L 2,...,L and n

be random variables which are independent of X2,...,X n  and take

values in the interval [0,1]. These variables will serve as the

lengths of the random arcs. The pairs (L1,L{) ,(L 2 ,L ) ,...,(L n,L)

are independent but it will be convenient in the proof to allow

dependence between L and L' The cumulative distributions of
i i.

L and Li will be denoted by F and F' respectively.
i i ii

If x is a point on the circle and t is a real number in the

interval [0,1], then x+t will denote the point on the circle

obtained by moving the point x a distance t in the counterclock-

wise direction. The point 4-t on the circle is defined so that

(x-t)+t - x. The arc (x,x+t] is defined by [x,x+t] = {x+s0 < s < t).

4
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From now on we shall use the variables x and y to denote points

on the circle.

Let N(y) be the number of times that y is covered by the arcs

[XIXi+LiI and N'(y) be the number of times that y is covered by

the arcs [XiXi+Lj]. In symbols

n

N(y) - I{yc[XiXi+Lil}
I i=l1

and

n

N'(y) I I{yc[XiX.+L{]}Ju i l

An integral written without limits is understood to be an integral

over the entire circle. In this situation dx denotes Lebesgue measure

on the circle and fdx = 1.

Theorem: Let g(x,j) be any function which is continuous in x and

increasing in the integer argument j. Define the random variables

W = fg(x,N(x))dx and W'= fg(xN'(x))dx

(3.1) If Fi <: F! for all i, then W <: W'. The implication
1 1

continues to hold if <: is replaced by <4 or <+

The theorem is a result about distributions. For convenience in

the proof we have defined N(.) and N'(.) on the same probability

space, but this is not an essential feature.

5.4
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Proof: According to (2.1) it suffices to show that

(a) Efg(xN(x))dx = Efg(xN'(x))dx

and I I
(b) J g(x,N(x))dx< +Jfg(x,N'(x))dx

To prove (a) we interchange the order of integration and expectation

and verify that Eg(x,N(x)) Eg(x,N'(x)) for all x. The interchange

is justified because g(.,j) is a bounded function for each j in the

range 0 < j < n. For any fixed y the indicator functions

I(yC[Xi,Xi+Li} are independent and P{yc[Xi,Xi+Li]} ELi. This remains

* ,"true upon replacing L I by Li . But F, <: F' implies EL, EL'.

Thus N(y) and N' (y) have the same distribution for all y so that

Eg(y,N(y)) = Eg(y,N'(y)).

We shall prove (b) in the special case where F, M F' for
i i

1 < i < n-l and F < F'. Repeated applications of this special case
n n

will show that (b) holds whenever Fi <tF' for all i. Since we are
4. i

taking Fi M F' for I < i < n-l we may also assume without loss of

generality that Li M L' for 1 < i < n-l.

A final reduction of the problem is obtained by using (2.8). It

suffices to show that (b) holds after conditioning on the values of

andn-l
XIX 21 ,X and LI,L2, .. L Define M(y) - E I{yC[Xi,X+L]}.-'* .. " "Xn- 1 29 "Ln-l" i-l iL

The variables we are conditioning on are independent of X L and L'
n9 n n

so that in what follows we may regard M(.) as a fixed nonrandom function

6
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on the circle. Note that N(y) =M(y) +I{ye[X ,tX n+L n} and

N'(y) =M(y)+ I{yc4X ,X +L']}.nf nn

Define the function

W(x,u) = fg(yM(y) +I(yc[x~x+uI})dy

What remains to be proved is that W(X n9L n) <+ W(X n9L') whenever

F <t F'. By (2.2) it suffices to show that E(W(X ,L )-s) <
n n nfn +-

E(W(X ,L')s for all s whenever F <+ F'. Using the definitionn n +n n

of <t we need only show that E(W(X , u)-s) +is an increasing convex

function of u for all s. Here we have used the assumption that X
n

is independent of L and L'.
nn

To verify that

E(W(X nu)- ~ (W(x~u)-s)+ dx

is an increasing convex function of u. we will show that the derivative

is nonnegative and increasing in u. From the definition of W(x,u) we

obtain

U ~=u g(x+u, MXU+ -g(x+uM(x+u))

so that

~f(W(x,u)-s)+dx = -(W(xu)-s) dx

= I{W(x~u) > s} -2- W (x, u) dx

4 = f1{W(x,u) > s}[g(x+u,M(x+u)+l) -g(x4u,M(x+u))]dx

f I{W(x-u,u) > s}[g(x,M(x)+l) -g(x,M(x))]dx

7
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This last integral is nonnegative since g(x,j) increases with j.

W(x-u,u) is increasing in u so that I(W(x-u,u) > s} increases

in u. Therefore the integral is increasing in u as desired.

A little fuss is needed to justify the preceding formal manipula-

tion. It is easily seen that if x+u is not one of the discontinuities

of M(.), then

lim 1(W(x u+6)-Wxu))= g(x+u,M(x+u)+l)-g(x+u,M(x+u))

We also have

'IW(x,u+6)-W(x,u)l < sup (g(y,n)-g(y,O))

for all x and u. Thus, dividing by 6 in the inequality

"dx I{W(x,u) > s}[W(x,u+6)-W(x,u)]

< dx(W(xu+6)-s)+- fdx(W(xu)-s)+

< dx I{W(x,u+5) > s}[W(x,u+6)-W(x,u)]

letting 6 go to zero through positive values and applying the bounded

convergence theorem, we obtain the desired expression for

--- dx(W(x,u)-s)+. This completes the proof of (b).

The argument involved in showing that (3.1) holds with <: replaced

sI\:' by <+ is almost identical to the argument for (b) given above. However,

8
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now we must verify that W(X ,L) <+ W(X ,L') whenever F <+ F'.
nnn n

By (2.3) it suffices to prove that

E(s-W(X ,L )) < E(s-W(X L'))
nfn +- n n+

for all s whenever F <+ F'. Using the definition of <+ we need onlyn n

show that E(s-W(X ,u))+  is a decreasing convex function of u for

all s.

E(s-W(X ,u))+ = J(s-W(xu)) +dx

and

fJ(s-W (xu) )+dx = (s-W(x,u))+dx

(f au
= -f I{W(xu) < s} -L W(x,u)dx

- I{W(x,u)< s}[g(x+u,M(x+u)+l)-g(x+u,M(x+u))]dx

- -f I{W(x-u,u) < s}[g(x,M(x)+l)-g(x,M(x))]dx

which is easily seen to be nonpositive and increasing in u. This

finishes the proof.

It is necessary in some applications to use functions g(x,j)

which are only piecewise continuous in x. This requires the following

slight extension of the theorem.

-4 Extension 1: Let g(x,j) be any bounded function which is measurable

* in x and increasing in the integer argument j. Then (3.1) holds

with W and W' defined as in the theorem.

9



Proof: Define

g-- .r g(x+s,j)ds

ge (x,j) is continuous in x so that with W = fg 5 (x,N(x))dx and

W' fg(x,N'(x))dx we have W <: W' whenever Fi <: F' for all

" i. Choose B so that Ig(x,j)l < B for all x and j. An easy

manipulation leads to

W IW-WI <1 ds dx[g(x,N(x-s)) -g(x,N(x)) l

".f

Clearly ig(x,N(x-s))-g(x,N(x))l < 2Bl{N(x-s)# N(x)}. Since N(.)

has at most 2n points of discontinuity rdxI{N(x-s) #N(x)} < 2ns.

Substituting these results in the earlier expression yields 1W -WI< 2Bne.

Similarly IW'-W'! < 2Bns. Thus for any convex function h we have

Eh(W E Eh(W) and Eh(W) - Eh(W') as c - 0. Using the definition

- * of <: we then conclude that W <: W'. The argument for the orderings

<t and <+ is the same.

We shall also need a special case of another extension of the theorem.

Extension 2: Let X be any finite measure on the circle and g(x,4)

be any function which is continuous in x and increasing in j.

Define W = fg(x,N(x)).(dx) and W' - fg(x,N'(x))X(dx). Then (3.1)

holds true.

Proof: By smoothing the measure X we can construct a sequence

- plp 2 ,p3 v. . . of nonnegative continuous functions on the circle which

10
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satisfies fX(dx) = fPk(x)dx for all k and X(A) = lim fApk(x)dx
k-

for all arcs A whose endpoints are not atoms of the measure X.

Define Wk = fg(xN(x))Pk(x)dx and W' = fg(x,N'(x))Pk(x)dx. The

theorem implies that W <: W' whenever F <: F' for all i.
k k i i

With probability one, none of the discontinuities of the function

g(x,N(x)) is an atom of A. Thus Wk - W almost surely ask 

Similarly W' - W' almost surely as k . The random variables
k

W, W' Wk and W' for 1 < k < - are uniformly bounded so that
k k

for any convex function h we have Eh(Wk) Eh(W) and

Eh(W ) -+ Eh(W') as k . Using the definition of <: then gives

us W <: W'. The argument for the orderings <+ and <+ is the same.

By taking X to be the counting measure of the set {xlx 2,...,x}

we obtain the special case of greatest interest.

Corollary 1: Let xl,x 2,...,x m  be arbitrary points on the circle and

g,g 2 ... ,gm  be arbitrary increasing functions. Define

m
W = [ g (N(x1 ))i=l

and

m

Then (3.1) holds true.

Ie
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4. Consequences.

This section contains applications of the previous results.

In each case we obtain a variability ordering by specifying a function

g and applying the results of section 3. Probability inequalities

may then be derived using (2.6) or (2.7)

Example 1: Define

n n
W L and W'= Y L', .. i=l ii i

Then (3.1) holds true.

This fact is well known and can be obtained by simple direct

arguments. The result also follows immediately from the theorem after

noting that with g(x,j) = j for all x and j we have

r n
g(x,N(x))dx = Li

f i=i

Example 2: Let h(x) be any continuous function. Define

g(x,j) = I{h(x) < j}

Using extension 1 we conclude that (3.1) holds with W and W' defined

as in the theorem. W = fI{h(x) _N(x)}dx takes values in the interval

. (0,1] and P{W=l} = P{h(x)<N(x) for all x}. Therefore using (2.6)

yields

(4.1) P{N>h} < P{N' >h} whenever Fi <t F' for all i

12
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Here N > h means N(x) >_ h(x) for all x. By a similar argument

* .- using (2.7) we obtain

(4.2) P{N<h} < P{N'<h} whenever Fi < ! for all i

Here N < h means N(x) < h(x) for all x. Since F <: G implies

F < G and F <+ G, both (4.1) and (4.2) apply in the case when

F <: F' for all i. By taking h in (4.1) and (4.2) to be the
i i

constant function h(x) = c for all x where c is an arbitrary

real number, we conclude that inf N(x) is stochastically smaller
x

than inf N'(x) whenever Fi <4 F! for all i and sup N(x) is<-x x
stochastically larger than sup N'(x) whenever F. <+ F! for all i.

x 1 1

Example 3: A special case of (4.1) is P{N(x) >_ 1 for all x} <

P{N'(x) > 1 for all x} whenever F <: F' for all i. Thus the

probability that the circle is completely covered increases as the

variability of the distributions is increased. Let P(n,F) denote

"" the probability that the circle is completely covered by n indepen-

V' dently and uniformly placed arcs whose lengths are independent with

the distribution F. By taking F = F = F= ...2 Fn  and

G = F' = F' =... F' in our earlier result we find that P(n,F) <
1 2 n

P(n,G) whenever F <: G. This verifies a conjecture made by Siegel

(1978). P(n,F) < P(n,G) was conjectured to hold when F was more

concentrated than G in the sense that

',1

°'V
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G(t) > F(t) for t < P

and

""'" G(t) < F(t) for t >

where p is the common mean of F and G. Using (2.1) and (2.4)

or (2.5) one easily sees that this condition implies F <: G.

More generally, for any given set A and integer k define

Q(n,F) to be the probability that every point in A (except for a

subset of measure zero) is covered by at least k arcs. Again we

assume that n arcs with independent lengths chosen from the distri-

bution F have been placed uniformly on the circle. By taking

g(x,j) i I{xeA and j > k} in extension 1 and then using (2.6) we

conclude that Q(n,F) < Q(n,G) whenever F <+ G.

Example 4: Inequalities similar to those in the earlier examples

may also be derived using corollary 1. Choose points xlX 2,... ,xm

on the circle. For any given integers klk 2,... ,k let the functions

.gl'g2,
''..,gm  be defined by gi(J) = Ij > ki We conclude from

S.

corollary 1 that the random variables

W = I{N(xi) > ki}

and

w I{N'(x.) > k

satisfy W <: W' whenever F <: F' for 1 < i < n. Similar results
i i

hold upon replacing <: by <t or <+. Using (2.6) and (2.7) we then obtain

14
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P{N(xi) > ki  for all i} < P(N'(xi) > ki for all i} and

* , (4.3)

P{N(xi) < ki for all i} < P[N'(x i) < ki for all i}

whenever F <: F' for 1 < i < n.
i i

Note: If we assume

-F f F1 . .F .. F and G = F' = r' ... F'

1 2_-2 n n

and let n 0, the distributions of (N(xl),N(x2),...,N(x)) and

m

- (N'(x 1 ),N'(x 2),...,N'(xm)) converge when suitably normalized to

multivariate normal distributions with covariance matrices we shall

" denote by E and E' respectively. It is easily shown that

F <: G implies El E V and Z El for all i
ii I,', ii ii- ii

and J. In the limit as n w the inequalities (4.3) become special

cases of Slepian's well known inequalities for the multivariate normal

distribution.
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